Technology-enabled Inquiry Climate Change Learning: Examining Group Work with Realistic Scientific Tools

> Drew Bush, Ph.D. Candidate^{*1} Renee Sieber, Associate Professor¹ ¹Dept. of Geography and School of Environment McGill University, Montreal, QC

Prepared for the 5th Annual SALTISE Conference Montreal, QC, June 2016

Problem statement

Lots done to teach climate change through inquiry

(Lueddecke, Pinter, & McManus, 2001; McCright, 2012; Gautier & Rebich, 2005)

Lots done to develop technology to aid this teaching

(Butler & Macgregor, 2003; Gautier & Soloman, 2005; Wu & Lee, 2015; Sterman et al., 2014)

It's important to do research in class (NAGT, 2015; NRC 1996, 2000; NGSS, 2013)

Central research question

Does learning built around a key tool of climate scientists, a global climate model (GCM), impart clear climate change understandings?

- Conservation of momentum $\frac{\partial \vec{V}}{\partial t} = -(\vec{V} \cdot \nabla)\vec{V} - \frac{1}{\rho}\nabla p - \vec{g} - 2\vec{\Omega} \times \vec{V} + \nabla \cdot (k_m \nabla \vec{V}) - \vec{F}_d$
- Conservation of energy $\rho c_{\vec{v}} \frac{\partial T}{\partial t} = -\rho c_{\vec{v}} (\vec{V} \cdot \nabla) T - \nabla \cdot \vec{R} + \nabla \cdot (k_T \nabla T) + C + S$
- Conservation of mass

$$rac{\partial
ho}{\partial t} = -(ec{m{V}}\cdot
abla)
ho -
ho(
abla\cdotec{m{V}})$$

- Conservation of H_2O (vapor, liquid, solid) $\frac{\partial q}{\partial t} = -(\vec{V} \cdot \nabla)q + \nabla \cdot (k_q \nabla q) + S_q + E$
- Equation of state

 $p = \rho R_d T$

The Educational Global Climate Model (EdGCM)

PROJECT GOALS

Allow teachers and students to run a full research version of a global climate model

- Design Experiments
- Running simulations
- Analyzing data
- Reporting on results

Demystifies how scientists forecast climate change

Mixed methods research

QUANTITATIVE

- 1. Pre/Post Diagnostic exam
- 2. Pre/ Post Questionnaire questions
- 3. Practice quizzes
- 4. Blog piece scores
- 5. Final project score

QUALITATIVE

- 1. Exam question answer text
- 2. Open-answer survey questions
- 3. Student interviews
- 4. Instructor interviews
- 5. Blog pieces
- 6. Written reflections
- 7. Video recordings
- 8. Completed handouts
- 9. Field notes

Curriculum: Inquiry-based learning

4-WEEKS: Twice weekly 80-minute class periods & two 150-minute laboratory groups of 20 students

OUTSIDE CLASS: Read articles, watched a video, and completed online research / public opinion projects on private Wordpress class blog

FINAL 2-WEEKS: Final projects during class and lab periods for oral and written (on our blog) presentation

■ GISS Surface Temperature Analysis					
Global Maps from GHCN v3 Data Select parameters on the following form to cre bottom of this page. Note that generating figur	ate a surface temperature anomaly or trend map. An explanation as takes 5 or 6 seconds; please be patient .	of the input elements appears at the			
	Data Sources: Land: GISS analysis + Ocean: ERSST_v4 +				
	Map Type: Anomalies +				
	Time Interval: Begin 2016 : - End 2016 :				
	Base Period: Begin 1951 🕃 - End 1980 🕃				
	Map Projection: Robinson +				
	Make Map				
Sources and parameters: 0	3HCN_GISS_ERSSTv4_1200km_Anom4_2016_2016_1951_198	0_100160_90_02_			
April 2016	L-OTI(°C) Anomaly vs 1951-1980	1.11			
April 2016	L-OTI(° C) Anomaly vs 1951-1980	1.11			

	About Us	FAQ's	Contact Us		
Solow @climatewizard					
Analysis Area	Time Period	Map Options	Measurement	Resources	
United States +	Mid Century (2050s) End Century (2080s)	Compare & Animate Models	Precipitation Annual	Documentation Developer Data and Map Image Download ClimateWard Custom Analysis Printer Friendly Version	
uture Climate Model		Change in Annual	Temperature by the	2080s	
PCC Fourth Assessment	ment Model: Ensemble Average, SRES emission scenario: A2		rio: A2		
General Circulation Model		Calgary	Char	ge Transparency Factoids Topo Get Values World	
	o ceattie		Superlug	Uttawa Montreal Humbs Toronto	

Pre/Post diagnostic exams

Pre/Post diagnostic exams

Pre/Post diagnostic exams Climate forcings essay question

	Treatment
Number of students	26/39
answering/class size	
Change in students	-5.2%
answering this	
question pre to post	
Mean Post Score	10.34615385
(15 point max)	
Standard Deviation	3.772980866

Control
27/40
7.5%
7.77777778
3.826359319

"The first factor is humans releasing greenhouse gases into the atmosphere. Due to the GHGs being released and their resonance time, they trap the infrared radiation from the sun causing global climate change (GHG effect)."

"The greenhouse effect is essentially the process by which solar radiation reflected off the Earth's surface, and radiation emitted by the Earth itself are "bounced" back down and "trapped" by GHG in the atmosphere..."

Pre/Post diagnostic exams Global climate models essay question

	Treatment
Number of students	12/39
answering/class size	
Change in students	26%
answering this	
question pre to post	
Mean Post Score	11.16666667
(15 point max)	
Standard Deviation	3.904154741

Part A: "Hindcasting is the process of running experiences to get maps and data from the past, then comparing it to real recorded data to evaluate the accuracy and precision of the climate model."

Part A: "Hindcasting makes a model for present data and goes back in time to see if the model correlates well to the real data taken in the past."

Week 2, Quiz Topic: Climate and Earth Science (7 MC)

Week 3, Quiz Topic: Climate Models (3 MC, 1 SA)

Score (Max 7 points)

Number of Students

Week 4, *Quiz Topic:* Good Science, Climate Policy, and Climate Models (3 MC, 3 SA)

Score (Max 9 points)

Number of Students

Written class reflections CONTROL (n=32)

Before Lecture

72 percent think GCMs take an "average of the past climate" to "predict the future"

After Lecture (<80 minutes later)

44 percent unsure what users do versus the GCM
63 percent unclear GCMs use physical equations
41 erroneous ideas on how scientists conduct modeling experiments.

Written class reflections

TREATMENT

Final Project Work (n=26)

53 percent on designing scientific experiments

40 percent understanding modeling process

50 percent finding background information

Lamented the complexity of software, inadequate "available time to use EdGCM," and technical errors where the model kept "shutting down"

Initial EdGCM Lab (n=37)

12 comments on lack of user-friendliness

16 comments on time it takes to use/operate

22 comments on it being too complicated/too many features

Preliminary video research

TREATMENT

- 24 Videos of 1-25 min each (2 excluded)
- With Computers: 12 videos, **207 min**

OTHER OBSERVATIONS:

- 13 Instructor guidance moments
- 14 Browser or Microsoft Word
- 2 Students leave
- 5 End-of-term discussions
- 57 minutes of quiet work together
- 22 camera acknowledgements & acting scenarios

Much more to come: Non-computer, tech issues, group dynamics

Conclusion & implications

- 1. Learning with EdGCM resulted in significant learning gains versus the control and resulted in deeper conceptual understanding
- 2. Disparities in this conceptual learning grew during the course, with treatment more focused on scientific/modeling process
- Need exists for technology that NOT ONLY replicates scientific process but ALSO is simple to use

Thank you!

Questions & contact:

Drew Bush drew.bush@mail.mcgill.ca @drewfbush

Renee Sieber renee.sieber@mcgill.ca @re_sieber

Literature cited

- 1. Butler, D. M., & Macgregor, I. D. (2003). Globe : Science and Education. Journal of Geoscience Education, 51(1): 9–20.
- 2. Gautier, C., & Rebich, S. (2005). The Use of a Mock Environmental Summit to Support Learning about Global Climate Change. Journal of Geoscience Education: *53*, 5–15.
- 3. Gautier, C., & Solomon, R. (2005). A Preliminary Study of Students' Asking Quantitative Scientific Questions for Inquiry-Based Climate Model Experiments. Journal of Geoscience Education, 53(4): 432–443.
- 4. Lueddecke, S. B., Pinter, N., & McManus, S. a. (2001). Greenhouse effect in the classroom: A project and laboratory-based curriculum. Journal of Geoscience Education, *49*(3): 274–279.
- 5. McCright, A. M. (2012). Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change. Journal of the Scholarship of Teaching and Learning, *12*(4): 86–101.
- 6. National Association of Geoscience Teachers (2015, April). In the Trenches: The News Magazine of the Association of Geoscience Teachers. 5(2).
- 7. National Research Council. (1996). National Science Education Standards. Washington, DC: National Academies Press.
- 8. National Research Council. (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, DC: National Academies Press.
- 9. NGSS Lead States (2013). Next Generation Science Standards: For States, By States (Core Ideas: HS Weather and Climate). Washington, DC: The National Academies Press.
- Sterman, J., Franck, T., Fiddaman, T., Jones, A., McCauley, S., Rice, P., ... Rooney-Varga, J. N. (2014). World Climate: A Role-Play Simulation of Climate Negotiations. Simulation and Gaming, XX(X): 1–26
- 11. Wu, J. S., & Lee, J. J. (2015). Climate change games as tools for education and engagement. Nature Climate Change, *5*(5): 413-418.