Activity: The Right Tool for the Right Job

Q1: Consider a balloon filled with 313 g of helium. The temperature of this balloon is decreased by 41.6°C as the volume decreases from 1910 L to 1643 L, with pressure remaining constant at 1.00 atm. Determine q, w and ΔE (in kJ/mol) for the compression of the balloon. C (He) = 20.8J/°C.mol.

Only use the appropriate tiles

Q2: When 0.500g of ethanol is burned in a bomb calorimeter surrounded by water, the temperature of both the water and the calorimeter rises by 9.15°C. Knowing that 250.0g of water is insulating the calorimeter and that the heat capacity of the calorimeter is 575 J/°C, calculate Δ H, Δ E and w at 25°C and 1.00 atm for this reaction per mole of C₂H₅OH.

Only use the appropriate tiles

$\Delta \mathbf{H} = \Delta \mathbf{E} + \mathbf{P} \cdot \Delta \mathbf{V}$	$\Delta H = \Delta E + \Delta n.R.T$	w = - ∆n.R.T	$q_{cal} = c_{cal} \cdot \Delta T$	q _{H2} 0 = m _{H2} 0.с _{H2} 0.∆Т
	q _{v rxn} = q _{p rxn}	$-q_{v rxn} = q_{cal} + q_{H2O}$	$\Delta H = \Delta E$	ΔE =
C ₂ H ₅ OH (aq) + 3 O ₂ (g) → 2 CO ₂ (g) + 3 H ₂ O (I)	Δn =	= 5mol – 4mol = 1mol	= 2mol – 3mol = -1mol	$=\frac{q_{vrxn}}{n}$

Q3: Consider the following reaction:

4Al (s) + 2 O_2 (g) \rightarrow 2 Al_2O_2 (s)

For Al₂O₂ (s): ΔG°_{f} = -1582 kJ/mol, ΔH°_{f} = -1676 kJ/mol and S^o = 51 J/K.mol

- a) Determine K_P for this reaction at 25.0°C. What will be the equilibrium pressure of O_2 at 25.0°C?
- b) Calculate ΔG , if the initial pressure of O₂ is 0.75 atm at 25.0°C.
- c) What will be the equilibrium pressure of O_2 at 55.0°C?

Only use the appropriate tiles

$\Delta S^{\circ}_{rxn} = \sum n_P \cdot S^{\circ}(P) - \sum n_R \cdot S^{\circ}(R)$		ΔG° = $- RTln(K)$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$K_P = \frac{1}{P_{0_2}^2}$
$ln\left(\frac{K_1}{K_2}\right) = \frac{\Delta H^o}{R} \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$	$\Delta G_{rxn}^{\circ} = \sum n_P \Delta G_f^{\circ} - \sum n_R \Delta G_f^{o}$	ΔH° _{rxn} =∑n _P .ΔH [°] _f (P) -∑n _R .ΔH [°] _f (R)	$\Delta G = \Delta G^{\circ} + RT \ln(Q)$	$Q_P = \frac{1}{P_{0_2}^2}$

Q4: Calculate the pH for the following solution:

For each case, assign for tiles:

- a) When 0.0200 mol of HNO_3 is added to 100.0 mL 1.00 M $NaNO_3$
- b) When 0.0200 mol of HNO₃ is added to 100.0 mL of 1.00 M NaNO₂
- c) When 0.0200 mol of HNO_3 is added to 100.0mL of 0.200 M KOH
- d) When 0.0200 mol of HNO_3 is added to 100.0mL of 0.200 M HNO_2
- e) When 0.0200 mol of HNO₂ is added to 100.0 mL of 0.500 M NaNO₂

Strong acid + Neutral Salt	Strong acid + Weak base	Strong acid + Strong base
Mixture of 2 acids (strong + weak)	Weak acid and its conjugated base	pH < 7
Buffer	Neutralization	pH <7

Buffer	H^+ (aq) + OH^- (aq) $\rightarrow H_2O$ (I)	H ⁺ (aq) + NO ₂ ⁻ (aq) → HNO ₂ (aq) B(mol) 0.0200 0.100 0 A(mol) 0 0.080 0.0200
HNO ₂ (aq) \rightleftharpoons H ⁺ (aq) + NO ₂ ⁻ (aq) I(M) 0.200 0 0.500 E(M) 0.200-x x 0.500 + x	pH dominated by HNO ₃	pH dominated by HNO ₃
$pH = pKa + \log \frac{[NO_2^-]}{[HNO_2]}$	$pH = pKa + \log \frac{[NO_2^-]}{[HNO_2]}$	pH = - log [H ⁺] = - log [HNO ₃]

pH = - log [H ⁺] = - log [HNO ₃] pH = 7
--